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Kac—Moody Algebra, Nonlocal Symmetries,
and Backlund Transformation for KdV Equation
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Gauge transformation of the Lax eigenfunction through the explicit use of Lie
group generators is seen to generate a two-parameter Backlund transformation.
Explicit integration of this in two particular cases leads to sech’ 8 type and
rational solutions starting from the trivial one. A method is indicated to generate
infinitesimal transformations around u in the sense of Steudel, which in this
case leads to a nonlocal structure of transformations.

Lie algebra has been successfully used in the study of nonlinear
integrable systems over the last two decades (Olshanetsky and Perelomov,
1981; Kupershmidt, 1987). Later, affine Kac-Moody algebras were also
incorporated and elegant results were obtained by various authors
(Kupershmidt and Wilson, 1985; Guil, 1984, 1985; Szmiglielski, 1988).
Among the most important results are deformation, the Miura map, and
the Backlund transformation, deduced via the automorphism of the Lie
algebra. There has also been considerable study on the gauge transformation
theory for nonlinear systems (Eichenherr and Honnerkamp, 1981; Hon-
nerkamp, 1981). Here we show that it is possible to deduce the Backlund
transformation for the KdV problem with an explicit realization of the
gauge transformation of the Lax eigenfunction in a particular Lie algebra.

To start with, let us consider the prolongation structure associated with
the KdV equation (Van Eck, 1983):

u, +12uu, +u,, ., =0 (1)
written as

w=dy+Adx+ Bdt
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with A, B given in the form
A=y—-Qu+T)z
B=Qu, +8u’—4T*—4uT)z+ (4T —4u)y —2uh (2)
where (h, y, z) span the Lie algebra and satisfy
[hyl=2y; [hz]l=-2z; [y z]=h (3)

T is an arbitrary parameter involved in the definition of the infinite-
dimensional algebra A;® C(T). C(T) is the ring of polynomials in T
needed to close the prolongation structure.

The differential form w is equivalent to the Lax pair

e =A¢, ¢, =By (4)
Let us transform ¢ as
: Y=gy (5)
where g€ A, and can be parametrized as
g=eePer (6)

«, B, v are arbitrary functions of (x, ). If we demand equation (4) to be
form invariant, then we must have

yo=AY, ¥ =By (7)
Using (5) in (6), we get
A'=gg ' +gAg
B'=gg '+gBg" (8)
using now g as given in (6), we get
o, =—y—BQu+T)e**
Ye=—=Qu'+T)+Qu+T)e*™ —»* (9)
B.=1—e >+ B°Qu+T)e** +2By

where u' is the new nonlinear field corresponding to (A', B’). Similarly,
from the time part we get

o, =2(u, —4u' )+ BQRuy +8u> — 4T —4uT)e®* — (4T —4u')y
B, = (4T —4uY(1—By)— B’ (Quy +8u"—4T? —4uT)e>™
— (4T —4u)e > +4u.B (10)
Y= 2ulA8u” —uT?—4u'T) — e** (2t +8u*~4T?>—4uT)
—4uly— vy (4T —4u)
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We now invoke the condition that it is possible to generate u from u’ via

g”' and g~' is obtained from g by reversing the sign of (e, 8, y). This

immediately leads to
. (Zu/+ T)‘“
e =
2u+T

y=| (u'—u) dx+g(1)

(11)

Using (11) and (9), we get
2
[J' (u—u") dx+g(t)} =—u'—u—T+Qu+DQu+T)"? (12)

It is interesting to observe that equation (12) connects the solutions (u, u’)
and implies u = u’ if we set g = T =0. So we may say that (12) is the space
part of the required BT. On the other hand, using equation (10), we get the
time part of the BT as

(—%“ (1 —u') dx+g(t)}

=Qul, +8u”—4T>~4u'T)

2u'+ T)l/z
Qu+T

—2uly— 9y (4T —4u") (13)

—(2uxx+8u2—4T2—4uT)<

To check that equation (12) is actually a BT, we set g=0, u'=0, and
v*=2u+ T; then (12) reduces to a simple ordinary differential equation
for v,

2
e -7
dx V2 (v )
which immediately integrates to
+h
p=—T"?tanh £ (14)
if T=a?/2, so that
T ,ax+h' o’ ,ax+h'
= - = h_
u 5 sech 5 3 sec 3 (15)

On the other hand, we may also set T=0, u'=0, and u = v,, leading to

Uy T 200, +2g(H) v, =0
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which upon integration leads to
vo+tvi+2gv=C (16)
and one immediately ends up with a solution
v =g tanh(B8x)—g
So,
u=uv, =B sech’(Bx)
B=C+g(1)

On the other hand, if we choose C, the constant of integration, in such a
manner that 8 =0, then we get from (15)

v,=—(v+g)’

(17)

whence

1
(x~d)’
We immediately observe that (15), (17), and (18) are nothing but stationary
forms of the solitary and rational type solutions of equation (1).

Lastly we analyze the structure of infinitesimal transformations sug-
gested by the BT (12). Let us again assume g =0 and set

(18)

u=-

w=u+y T'G, (19)

n=1

Then from (12) we get a recursion relation for the G; by equating various
powers of T'. We can write this as

4“ ZJ Gn J- Gn~k+2z J Gn J Gn—k—l ZZ Gnank (20)

We now set n=0, 1, 2 and solve (17), which yields

=2ivu exp(2i J J'J)

o[ )5
o [l (£ k2

1 (1 i
*2iu- Jf 2u 16u\/t_l>

and so on.
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Now, as observed by Steudel, if we denote (12) as
u’ = B’ru

where B stands for a BT with a parameter T, and u” is another solution
obtained via T+¢,

u'=Br+cu
then we can write
u'=Br+e(By) 'u'

If we now expand By +&(By)™" in &, we get
’ d —1
u'"=gen+u’; n:a—(BT-FsBT) (21)
€

and these coefficients n will be the Lie-Backlund symmetries (Van Eck,
1983). Since our initial expansion for the By involves nonlocal terms, it is
quite simple to ascertain that those in (18) will also be nonlocal.

Lastly, we mention that in this particular situation it is possible to
utilize another form of lie group generators,

g=(1+m" y)(1+n"-z)e*™"
=(1+m~ - z2)(1+n"-y)e®™

with

and

Proceeding along the same lines as before, we deduce

U [Hu—u')+ T][exp<4J' U, dt):l
X [J dt 4(u—u'") exp<4 J‘ u, dt) +D:|

—[2u'(ui~u )+ T(ui—u)]=0

which is another form of the x part of the BT and it is not difficult to deduce
also a time part via the same route.
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The important part of our group-theoretic approach is that it leads to
a two-parameter BT, while in the usual BT of the KdV equation usually
we have only one constant. In our case one of the parameters is supplied
by the Kac-Moody algebra itself and the other one through the constant
of integration.
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